Пластмасса с прочностью металла

7. Термореактивные полимеры и пластмассы

Пластмассы (пластические массы) — это материал, полученный на основе высокомолекулярного органического соединения (полимера), выполняющего роль связующего и определяющего основные технические свойства материала.

Полимеры — высокомолекулярные вещества с очень большой молекулярной массой — 105…107. Основа структуры полимеров — микромолекулы, которые построены из многократно повторяющихся звеньев — мономеров.

Получение полимеров связано с образованием химически активных групп и их последующим соединением, в результате чего получаются макромолекулы. Это происходит в результате реакции полимеризации. Полимеризация — это соединение в макромолекулы одинаковых мономеров, обладающих двойной связью.

Структура макромолекул полимера может быть линейной, разветвленной и пространственной, встречаются и другие виды.

Мономеры в макромолекуле связаны между собой сильной ковалентной связью. У полимеров с линейной и разветвленной структурами связь между молекулами слабая. Поэтому при повышении температуры такие полимеры легко размягчаются, становятся пластичными. Это термопластичные полимеры — термопласты. После охлаждения термопласты вновь затвердевают, приобретая первоначальные свойства. Никаких необратимых химических превращений в процессе нагрева и охлаждения термопласты не претерпевают.

Пластмасса с прочностью металла

Полимеры с пространственно замкнутой (сетчатой) структурой образуются мономерами, имеющими более двух активных связей, все звенья структуры в этом случае соединены ковалентными связями. На первой стадии образования такие

полимеры получают линейную структуру. Пространственная структура образуется на второй стадии в процессе отверждения (оно происходит под воздействием температуры, давления, отвердителей) вследствие протекания необратимых химических реакций, вызывающих возникновение связей между ранее разобщенными макромолекулами (сшивание).

Такие полимеры называются термореактивными, или реактопластами. В зависимости от количества связей между макромолекулами различают густосетчатые (с большим количеством связей) и редкосетчатые (с малым количеством связей) полимеры. Термопласты при нагреве сначала размягчаются, а затем образуют высоковязкие жидкости.

Пластмассы могут быть монолитными и газонаполненными (ячеистой структуры). Последние подразделяются на пено- и поропласты.

Пластмассы — это искусственные материалы, основой которых являются полимеры.

При нагреве пластмассы размягчаются, становятся пластичными. В таком состоянии им под давлением придается необходимая форма, сохраняющаяся после охлаждения. Если связующее — термопластичный полимер, переход отформованной массы в твердое состояние совершается при охлаждении. Если связующим является термореактивный полимер, то отверждение происходит при нагреве. Пластмассы по этому признаку делят на две группы: термопластичные и термореактивные.

Основа термопластичных пластмасс — полимеры с линейной или разветвленной структурой. Температура эксплуатации наиболее распространенных термопластов не превышает 60…200°С, при более высоких температурах начинается резкое снижение свойств.

Термореактивные пластмассы. Связующие вещества в этих пластмассах — термореактивные полимеры. Используются фенолформальдегидные, кремнийорганические, эпоксидные смолы. Теплостойкость этих полимеров составляет 200…350°С. В зависимости от эластичности пластмассы делят на три группы:

  1. жесткие (модуль упругости 700 МПа и выше);
  2. полужесткие (70…700 МПа);
  3. мягкие (до 70 МПа).

Пластмассы могут быть одноили многокомпонентными. Состав однокомпонентных представлен только одним полимером. В состав многокомпонентных пластмасс, помимо связующего, могут входить наполнители, пластификаторы, отвердители, красители.

Наполнители повышают механические свойства, снижают усадку при прессовании и придают материалу специальные свойства. По виду наполнители пластмасс делят на:

  1. порошковые (наполнитель — древесная мука, графит, тальк и др.);
  2. волокниты с наполнителем в виде волокон (очесы хлопка и льна), в том числе стеклои асбоволокниты;
  3. слоистые с листовым наполнителем (бумага — гетинакс, ткань хлопчатобумажная — текстолит, а также асбои стеклотекстолиты со стеклянной тканью и асбестом);
  4. газонаполненные — пенои поропласты (наполнитель — воздух или нейтральные газы).

Пластификаторы повышают эластичность, а также морозои огнестойкость и облегчают прессование. В качестве пластификаторов используют олеиновую кислоту, стеарин.

Отвердители — оксиды некоторых металлов, уротропин. Они способствуют отверждению термореактивных пластмасс.

Красители и пигменты придают пластмассам определенную окраску.

Связующее вещество в этих пластмассах — термореактивные полимеры. Используются фенолформальдегидные, кремнийорганические, эпоксидные смолы. Теплостойкость этих полимеров 200…350°С. Термореактивные пластмассы являются многокомпонентными, в их состав входят наполнители, а также могут быть введены пластификаторы и красители.

Пластмассы с порошковым наполнителем. В качестве наполнителя используют органические и минеральные вещества. Минеральные наполнители придают материалу волокнистость, химическую стойкость, повышенные электроизоляционные свойства. Такие пластмассы изотропны, так как относятся к аморфным материалам, их механические свойства невысоки. Основное применение — несиловые детали, в основном электоизоляционного назначения.

К пластмассам с волокнистым наполнителем относятся волокниты, асбои стекловолокниты. Наполнитель волокнитов — хлопковая целлюлоза. Их применяют для изготовления деталей технического назначения — направляющих втулок, фланцев и т.д. Для асбоволокнитов (наполнитель — асбест) в качестве связующего используют, в основном, формальдегидную смолу.

Их преимущество — повышенная теплостойкость. Асбест обладает высокими фрикционными свойствами, что наряду с высокой теплостойкостью обусловливает применение асбоволокнитов для изготовления деталей тормозных устройств. Стекловолокниты обладают высокой удельной прочностью, хорошо сопротивляются вибрационным и знакопеременным нагрузкам. Их свойства зависят от характеристик стекловолокна — диаметра и длины волокон, состава стекла.

Слоистые пластмассы состоят из связующего и листового наполнителя, что определяет их слоистую структуру и анизотропные свойства.

Гетинакс — это материал, наполнителем которого служат разные сорта бумаги. Его можно применять при температуре до 120…140°С, он устойчив к действию растворителей. Гетинакс применяют как материал для внутренней отделки транспортных средств.

Текстолит (наполнитель — хлопчатобумажные ткани) обладает хорошими виброгасящими и антифрикционными свойствами. Применяется в машиностроении для изготовления подшипников скольжения, корпусных деталей и т.д.

Асботекстолит содержит около 40% связующего, остальное — асбестовая ткань. Его применение определяется высокими фрикционными и теплоизолирующими свойствами.

Пластмасса с прочностью металла

Наполнителем стеклотекстолитов является стеклоткань. Используют их в самолетои судостроении, радиои электротехнике.

К газонаполненным пластмассам относят легкие пластмассы— пенопласты и поропласты, которые состоят из мельчайших ячеек или пор, отделенных друг от друга тонкой пленкой полимера.

Материалы, состоящие из замкнутых, несообщающихся ячеек, называют пенопластами, а материалы, в которых преобладают сообщающиеся между собой поры, — поропластами. Когда от материала требуются высокие теплои электроизоляционные свойства и водонепроницаемость, применяют пенопласты. Для звукоизоляции используют поропласты.

Пенопласты и поропласты получают насыщением расплавленной смолы газами под давлением, при этом происходит вспенивание полимера. В пенопластах 90…95% объема занимают газы. Наибольшее применение получили пенополиуретаны, обладающие высокими диэлектрическими, тепло-, эвукои виброизоляционными свойствами, высокой удельной прочностью, большой влагостойкостью, стойкостью к кислотам и щелочам, малым коэффициентом теплопроводности, низкой плотностью (до 20 кг/м3).

Фольгированные пластмассы имеют специальное назначение: их применяют при изготовлении плат с печатным монтажом, кодовых переключателей, печатных якорей электродвигателей и других деталей. Фольгированные пластмассы представляют собой слоистый пластик (гетинакс, стеклотекстолит), облицованный с одной или двух сторон медной фольгой толщиной 35 или 50 мкм.

Медную фольгу получают электролитическим осаждением, что обеспечивает ей однородный состав. Для улучшения сцепления с пластиком одну сторону фольги обрабатывают в щелочном растворе (оксидируют). Склеивание фольги с пластиком производят клеем БФ-4 в процессе прессования.

Фольгированные пластики (табл. 1) должны удовлетворять требованиям, связанным с технологией производства печатных схем, и условиям их эксплуатации. Фольгированный пластик должен выдерживать воздействие повышенных температур в процессе производства печатных плат (взаимодействие припоя при пайке схем) и обеспечивать достаточную прочность сцепления фольги при длительной эксплуатации изделий.

Таблица 1. Фольгированные пластики

Название Марка Толщина, мм Предел прочности при растяжении σв, МПа Прочность сцепления с фольгой, Н/см Плотность, г/см3 Рабочие температуры, °С
Гетинакс фольгированный ГФ-1-П 1,5…3,0 11,5 13,5 1,5…1,85 От –60

до 100

Стеклотекстолит фольгированный СФ-2 0,8…3,0 280 13,5 1,9…2,9 От –60

до 120

Низкочастотный фольгированный диэлектрик НФД-180-2 0,8…3 320 18,0 1,8…2,0 От –60

до 180

Фольгированный диэлектрик для многослойных плат ФДМ-2 0,25 180 12,5 3,5…4,0 От –60

до 100

Фольгированный стеклопластик СФЭД 0,7…2,0 260 26 1,9…2,9 От –60

до 120

Фольгированный асбопластик АФЭД 1,7…2,0 280 9,5 1,8…2,9 От –60

до 180

6.1Классификация строительных растворов……………………285

6.3Модифицирующие добавки…………………………………..287

6.5Подбор состава смешанного раствора………………….……295

6.6Сухие строительные смеси (ССС)……………………….…..296

6.7Виды строительных растворов…………………………….…297

3. Полиэтилен, поливинилхлорид

Полиэтилен и поливинилхлорид относятся к конструкционным полимерным материалам. Это термопластичные пластмассы.

Полиэтилен (ПЭ) (-СH2—CH2-)n — плотный и прочный материал, стойкий к действию органических растворителей, хорошо окрашивается в различные цвета. Применяется, в основном, при изготовлении детской мебели, стульев, кресел различных емкостей, крепежной фурнитуры.

Производится полиэтилен высокого (ПЭВД) и низкого (ПЭНД) давления (полимеризация при давлении 100 и 0,1…0,6 МПа и температуре 200…300 и 150°С соответственно). Макромолекулы имеют линейную структуру, что обеспечивает их упаковку в пачки и таким образом облегчает кристаллизацию. Степень кристалличности ПЭНД — 75…95%, ПЭВД — 55…65%.

ПЭ обладает довольно высокой химической стойкостью, при комнатной температуре нерастворим ни в одном известном растворителе.

ПЭ также обладает высокими диэлектрическими свойствами.

Длительное применение ПЭ ограничено температурой 60…100°С. Морозостойкость до –70°С.

Поливинилхлорид (ПВХ) (-CH2—CHCl-)n. На основе поливинилхлорида производятся два вида пластмасс — винипласт и пластикат, в состав которых, в отличие от винипласта, входят пластификаторы. Поливинилхлорид — один из наиболее распространенных синтетических материалов. Он негорюч, обладает высокой химической стойкостью, большой механической прочностью, почти не набухает, устойчив к старению, не имеет запаха, безвреден, легко окрашивается.

Он наиболее дешевый и наименее дефицитный, поэтому получил широкое применение при производстве ящиков из погонажных профильных элементов, раскладок, емкостей и т.д. Винипласт имеет высокие прочность и упругость, из него изготавливают строительную облицовочную плитку, защитные покрытия металлических емкостей. Недостатки — низкая длительная прочность и малый интервал температур (от –10 до 60…70°С).

Введение пластификаторов расширяет интервал рабочих температур (от –50 до 160–195°С), повышает эластичность. Пластикат — полярный пластик, он обладает высокими диэлектрическими свойствами в области низких частот. Основное применение пластиката — изоляция проводов, кабелей.

4. Полиамиды и полистирол

Пластмасса с прочностью металла

Полиамиды и полистирол относятся к термопластичным пластмассам. Используются в качестве конструкционных материалов. Полиамиды — твердые термопластичные полимеры с широко известными названиями: капрон, нейлон, лавсан, в состав которых входят амидная группа (-NH-CO-), а также этиленовые группы (-CH2-), повторяющиеся от 2 до 10 раз.

Полиамиды — кристаллизующиеся полимеры. При одноосной ориентации из них получают волокна, нити, пленки. Свойства разных видов полиамидов близки, они являются хорошим антифрикционным материалом, обладают вибрационными свойствами, высокими показателями прочности при ударных нагрузках и изгибе, имеют высокую жесткость, твердость поверхности, морозостойки. Недостатки полиамидов — гигроскопичность и подверженность старению.

Применяются полиамиды в электротехнической промышленности, для изготовления фурнитуры, стяжек, полкодержателей и других мелких деталей, работающих под большими нагрузками. Их используют также для антифрикционных покрытий металлов.

Полистирол (ПС) (-CH2—CHC6H5-)n является производной этилена. Это твердый, жесткий, прозрачный материал, хорошо окрашивается.

Полистирол наиболее стоек к воздействию ионизирующего излучения по сравнению с другими термопластами. Полистирол растворим в бензоле, но стоек к кислотам, щелочам, маслам. Недостатки полистирола — низкая теплостойкость, склонность к старению и образованию трещин. Полистирол применяют при изготовлении деталей радиотехники, приборов.

Ударопрочный полистирол — один из основных конструкционных материалов. Он обладает высокой твердостью, прочностью к ударным нагрузкам, эластичностью, сопротивлением на разрыв; стоек к действию температуры от 65 до –40°С. Применяется при изготовлении ящиков, погонажных элементов детской мебели, крепежной фурнитуры и др.

Модификацией полистирола являются акрилонитрилбутадиеностирольные (АСБ) пластики — сополимеры полистирола с синтетическими каучуками. Они являются ударопрочным материалом, превосходят обычный полистирол по ударной вязкости в 3–5 раз, а по относительному удлинению — в 10 раз. АСБ-пластики имеют высокую прочность, твердость, жесткость, устойчивость к истиранию, ударопрочность.

5. Фторопласты и полиметилметакрилат

К фторопластам относят полимеры, состоящие, в основном, из углерода и фтора. Это, например, фторопласт-3 и фторопласт-4, обладающие непрозрачностью и высокой химической стойкостью. Фторопласт-4 абсолютно химически стоек, имеет низкий коэффициент трения, но обладает хладотекучестью и поэтому в машиностроении применяется при незначительных нагрузках.

Этот материал работает при температуре от –250 до 260°С. Он не перерабатывается обычными методами, так как не переходит в вязкотекучее состояние. Изделия из фторопласта-4 получают спеканием спрессованного порошка. Фторопласт-3 при нагреве до температуры 210°С размягчается и плавится, что дает возможность перерабатывать его методом литья под давлением.

Фторопласты широко применяются для изготовления уплотнительных деталей — прокладок, набивок, работающих в агрессивных средах, деталей клапанов кислородных приборов, мембран, химически стойких деталей, самосмазывающихся вкладышей подшипников, реакторов, насосов, тары пищевых продуктов. Их используют в восстановительной хирургии, для защиты металла от воздействия агрессивных сред.

Полиметилметакрилат — это термопластический материал (органическое стекло), обладающий прозрачностью, твердостью, стойкостью к атмосферным воздействиям, водостойкостью, стойкостью ко многим минеральным и органическим растворителям, высокими электроизоляционными и антикоррозионными свойствами. Он выпускается в виде прозрачных листов и блоков.

К положительным свойствам органического стекла относятся:

  1. низкая плотность;
  2. упругость;
  3. отсутствие хрупкости вплоть до –50…60°С;
  4. более высокая по сравнению со стеклом светопрозрачность;
  5. легкая формуемость в детали сложной формы;
  6. простота механической обработки;
  7. свариваемость и склеиваемость.

Пластмасса с прочностью металла

Но по сравнению с минеральными стеклами органические стекла обладают более низкой поверхностной твердостью. Теплостойкость органического стекла ниже, чем у минерального. Кроме того, органическое стекло легко загорается. Органическое стекло применяется для изготовления санитарно-технического оборудования, светильников, фонарей, деталей приборов управления.

6. Поликарбонаты, пенопласт и полиимиды

Поликарбонаты — это термопластические материалы, обладающие ценными свойствами:

  1. высокой поверхностной твердостью;
  2. ударной прочностью;
  3. теплостойкостью.

Поликарбонаты водостойки и стойки к окислительным средам при повышенных температурах. Они совершенно прозрачны и могут быть использованы вместо силикатного стекла для изготовления фонарей, светильников, деталей приборов, посуды, тары для жидких веществ. Поликарбонаты применяют для изготовления зубчатых колес, втулок, клапанов, кулачков и других подобных деталей.

Пенопласт — это полимер, отличающийся химической стойкостью и атмосферостойкостью. По водостойкости пенопласт аналогичен фторопластам, полиэтилену и полистиролу. Из пенопласта изготовляют химически стойкие трубы, клапаны, вентили, сепараторные кольца, подшипники, детали часовых механизмов, детали отделки помещений.

Полиимиды — это новый вид термопластичных пластмасс.

Его свойства:

  1. высокая нагревостойкость (220…250°С);
  2. хорошие электрические характеристики;
  3. большие значения механических характеристик. Полиимидные пластмассы могут использоваться при температурах до –155°С, т.е. их можно применять в холодильных установках большой мощности.

Полиимиды химически стойки. Они не растворяются в большинстве органических растворителей, на них не действуют разбавленные кислоты, минеральные масла и вода. Разрушение полиимидов вызывают концентрированные кислоты, щелочи и перегретый водяной пар. Из полиимидов получают электроизоляционные пленки светло-желтой или коричневой окраски. Полиимидные пленки выпускаются толщиной от 5 до 100 мкм и более.

Пластмасса с прочностью металла

На основе полиимидов изготовляют различные пластмассовые изделия электроизоляционного (изоляционные ленты, изоляционное покрытие и др.) и конструкционного назначения (прокладки, детали). Для этого используют как чистые полиимиды, так и наполненные стекловолокном и другими нагревостойкими наполнителями. Изделия из полиимидов изготовляют литьем и прессованием при температурах 356…400°С.

7.1Краткий исторический обзор………………………………….310

7.2Бетоны и бетонные смеси……………………………….……317

7.3Материалы для бетонов общестроительного

испециального назначения………………………………..….324

7.4 Специальные виды бетонов…………………………….….…333

Приложение………………………………………………………..……343

Библиографический список………………………………………..…345

Пролистать наверх
Adblock detector